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One-dimensional magnetohydrodynamic models have been used [1-3] to examine the self- 
maintaining current layer (T layer) in a flow of ionized gas in a transverse magnetic field. 
It has been found that the occurrence of the T layer accentuates the interaction of the flow 
with the field, which can be used in an efficient ~D generator. The theoretical possibility 
of making such an electricity generator has been demonstrated in [4], in which a one-dimen- 
sional model was used to calculate an arbitrarily selected generator state. However, the 
model was complicated and took the form of a system of partial differential equations, so 
it is very difficult to use it to analyze the operation of T-layer MHD generators. One can 
use the available information on the gasdynamic processes in a flow containing a T layer [5] 
in an elementary theory of the ~IDG containing a T layer, Where the layer is represented by 
an impermeable and nondeformable piston. This approach provides a relation between the mag- 
netic-field induction in the channel, the expansion of the working part in relation to the 
critical section, the retardation parameters of the working body at the inlet, and the tem- 
perature and velocity of the T layer. The result is parametrically dependent on the thick- 
ness of tile T layer, which remains undetermined. To avoid this indeterminacy, it is neces- 
sary to consider the physical processes in the T layer that are responsible for its structure 
and definite dimensions. This problem has been considered in [6] for a stationary T-layer 
structure stabilized by thermal-conduction heat loss. However, in an ~D generator in which 
the characteristic length of the channel is l* ~i0 and the characteristic velocity is u* ~i03 
m/sec, the time to reach this stationary solution is T%>>r* =l*/u* ~i0 -2 sec. 

We consider the processes in the channel of an I~D generator with solid electrodes (Fig. 
i, where D is the shock-wave speed). The working body is not electrically conducting and 
after expansion in the accelerating nozzle moves with a supersonic velocity. The flow intro- 
duces an isobaric temperature perturbation into the working part of the channel, and this 
produces electrical conductivity and interaction with the magnetic field. The magnetohydro- 
dynamic process produces the self-maintaining current layer from the temperature perturbation, 
whose structure is found by solving a system of magnetic gasdynamic equations in Lagrange 
variables, where it is assumed that Bind/Bo~Rm(l -- k) =~oou~(l -- k)<<l, which enables one 
to neglect the induced magnetic field, i.e., Bind =0, ~E/~x =0. 

dp-~/dt - -  Ov/Os = 0; (1) 

dx/dt = v; (2 )  

pdv/dt = --9Op/Os + Boj; (3) 

cvpdT/dt  - -  RTdp/d t  = ]2/6 - -  qem; (4) 
o or.  
o-7- ( / /o )  = - -  B0 ~ f ,  ( 5 )  

] = --pO~/Os; (6) 

p ~- RpT; (7) 

= %(T/r~)~. (8)  

Here v i s  t h e  v e l o c i t y  o f  t he  r e l a t i v e  mo t ion  of  the  v a r i o u s  p a r t s  o f  the  T l a y e r .  The v e l o c -  
i t y  f i e l d  e q u a l i z e s  when f o r c e  b a l a n c e  i s  a t t a i n e d  and v =0 .  The work ing  body i s  assumed 
to  be an i d e a l  gas w i t h  a d i a b a t i c  p a r a m e t e r  y = 1 . 2  and m o l e c u l a r  mass ~ =30,  which r e p r e s e n t s  
c l o s e l y  t he  c o m b u s t i o n  p r o d u c t s  w i t h  the  a p p r o x i m a t e  c o m p o s i t i o n  25% C02 +5% H20 +70% N2. 
System ( 1 ) - ( 8 )  can be s i m p l i f i e d  i f  one b e a r s  i n  mind t h a t  a t  t he  p a r a m e t e r s  o f  t he  p r o c e s s  
p o-10 s N/m a, T ~2 .103K,  Tc ~104K, ~ ~103 mho/m, u ~103 m / s e c ,  B %2T, 6o ~10  ~-~ m ( t h e  i n i t i a l  
d i m e n s i o n  o f  t he  T l a y e r )  t he  c h a r a c t e r i s t i c  t imes  a r e  r e l a t e d  by 

~F << TO < T*, (9)  
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where TF = 6 o / ~  ~ o / ~ B  2 ~i0 -5 -- i0-" sec is the time required to establish force balance 
in the T layer, and the order of this can be determined by evaluating the terms in the equa- 
tion of motion (3), while TQ -cvPTc/ou2B = ~i0 -~ sec is the time required to establish thermal 
balance, 

~,is means that one can split up the task into two stages. In the first, one determines 
the structure of the T layer formed by adiabatic action of bulk electrodynamic forces. Some 
of the mass of gas in the T layer is compressed and correspondingly heated, while the rest 
cools on adiabatic expansion. In the second stage we solve energy equation (4), in which the 
sign of the right side j=/~ -- qind determines the direction of the process. 

We then have to solve the following system of dimensionless equations, in which we 
neglect the convective motion and the nonadiabatic effects of Joule dissipation and radiation: 

8p/Os -~- 8~/8s = O; (10)  

pd T/dt  = (? - -  1) Tdp/dt; ( 11 ) 

a (~ a , ~  = (12)  
~ as ] 0; 

= T~; (13) 

p ---- pT; (14) 

Ox/as = p-L (15) 

The scales for the dimensionless quantities are as follows: pl the pressure behind the 
shock front reflected from the T layer (Fig. i), T c the initial temperature of the T layer, 
oo the coefficient from the approximating expression (8), and 6o the initial dimension of the 
T layer. As the initial conditions, one specifies an isobaric temperature perturbation for 
the dimension 6o with parameters T(s, t =0) =Tc, p(s, t =0) =po. The pressure distribution 
for t~ F is found by solving the stationary problem with the boundary conditions p(s =0) =I, 
x(s =0) =0, p(s =i) =A, where A =p=/p, is a characteristic parameter. 

The solution is represented in the form 

r = I -- p; (16)  
p ----- [t -- (t  -- Afi)s]l/B; (17) 

,I/~'6~, [ 6v-1 ] 
~" ~" Li--p V ]; ( ! 8 )  

x = ( t  - ~t~)  ( ~ 7  - i )  

T = (p'p0)(~-i)/v, (19) 

where 8--[(Y +i) -- n(y . l)~/y. 

Figure 2 gives the characteristic temperature profiles. _The solution is dependent on 
the degree of nonlinearity n in the equation ~ =T n. Both states have been selected from the 
conditions o,~o~ =~=6o2, with n =4 describing o(T) in the range 9-10~OK~T~,II.10S~ and n =8 
for the rangeT.10 ~%< ~ T~9.103 %<. 

The conditions at the boundary of the T layer (pl, p=, and velocity u) in turn are deter- 
mined by the set of independent parameters, which taken together uniquely characterize the 
generator process. These are the following quantities: poo, the pressure in the combustion 
chamber; Too, the temperature in the combustion chamber; Cp and Cv, the specific heats of 
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the working body; E(T, p, ~), the degree of blackness in the plasma layer with temperature T, 
pressure p, and dimension ~; A,, the critical section of the channel; A, the section in the 
working part; Tc, the initial temperature in the T layer; ~o, the initial dimensions of the 
T layer; Bo, the induction of the external magnetic field; and R~, the load resistance. 

From this set of dimensional parameters we can derive dimensionless combinations charac- 
terizing the process: N =B~/2popoo, the ratio of the magnetic pressure to the pressure in 
the combustion chamber, Rmo =~ooo~oCoo, the analog of the magnetic Reynolds number, which 
is determined via the speed of sound in the combustion chamber Coo, y •Cp/Cv, the adiabatic 
parameter, and Mo =Uo/Co, the l~ch number for the unperturbed flow in the working part of 
the channel, which is related to the degree of expansion by 

v+1 I 

together with K =E/uBo, the load parameter (we assume that K is given and that the load 

4%aSB 1'4c 
resistance can always be selected), and ~ = s s , a dimensionless parameter defining 

~ I 
the ratio of the radiative loss from a particular working body to the energy performance of 
the l~D channel (here the degree of blackness eo is defined as e(Tc, poo, ~o)). 

For definiteness we will consider states with poo =106 Pa, Too =3000 K, Bo =2T, T c =i0" 
K, Oo =3"103 mho/m, ~o =0.25 m, then N =1.6; Rmo =I; y =1.2. These states differ in degree 
of expansion in the channel, for which lio is correspondingly 1.5, 2, 2.5, and 3. The load 
parameter then will vary in the range 0 ~ K ~ I. 

We now write equations relating the conditions at the boundary of the T layer to the 
dimensionless parameters of the I~D generator: 

-- v+---Y ; (20) 

P2 -~ PO(C2/Co) 27/( 'e-0,  (21) 

where Ill =(Uo -- D)/co is the shock-wave Mach number and c2 =Co -- [(y -- l)/2](Uo -- u) is 
the speed of sound in the negative-pressure wave (u is the speed of the T layer). The param- 
eters with subscript zero correspond to those of the unperturbed flow, which in turn are 
defined by the following: 

,~-- i ~\-v/(~-l)  = _ M~)-I,  po=Poo(tq--~-7--Mo ~ , To Too(t q-'!-~21 

c o = ( ~ R T o )  ~/2, uo = coMo. (22) 
The speed of the shock-wave front is determined from the equation of continuity: 

+ J ~1~ 2 \ ~o / ...... 
u o - - D  = ~=P 2 ---- (23) 

_ [ % - D  ~2" 
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We introduce the parameter X =U/Co, which is the dimensionless velocity of the T layer. 
Then from (20)-(23) we find the pressure ratio: 

Po V § i (Mo -- ~.)+ (M 0 -- X) -~ i V § i"  

Under c o n d i t i o n s  o f  f o r c e  b a l a n c e  we have  

(24) 

or in integral form 

d__p_p = / B  ~ = _ ~ (x) uB] (t - -  K) 
dx 

6 

Pl - -  P2 = u B~ ( i  - -  K) J'o (x) dx. 
0 

We determine the dimensionless v e l o c i t y  f rom t h i s  e q u a t i o n  u s i n g  ( 2 0 ) - ( 2 3 ) :  

= 2RmoN (i --K) AoA 5 - - '  

where 

(25) 

(26) 

6 

A= = ~ o (x) dx/%6,  A8 = 8/60. 
o 

We determine  A = p 2 / p l  from (20) and (21) t o  ge t  

A=[I ? - -  i (M~ - -  ~) ]~v/(v-1)~ (M~ k)" 2 

We use the solution of (17)-(19) 
of the flow parameters" 

Then equations (24), 

(27) 

(28) 

for the T layer to express the integrals of (27) in terms 

('~--l)n 

--A~ ]; 

= /-:/v~v [I -- A ~v-:.~ "J'l A~ (i - A s )  (~v - I) ( 3 0 )  

(17)-(19), (26), (30) in inexplicit form relate the solution in the T 
layer to the parameters of the ~D generator. By solving these equations numerically one 
can establish the dependence of A and k on the following set of dimensionless characteristics: 
Mo, N, Rm~, K, y, n. 

A yery important characteristic of an I~D generator as a heat engine is the parameter 
nN, the degree of conversion of the gas enthalpy into electrical energy, which for an ~D 
generator with a T layer is defined as 

(p~ -- p~) uAK 
= o,u, (%r, + u /2) A," (31) 

On converting to dimensionless variables, (31) is rewritten as 

v Mo i +~!M~ 

Figures 3-5 give the result from analyzing the working conditions in a T-layer ~D generator. 

When the T layer is formed from an initial perturbation with dimension 8o, part of the 
heated gas cools on adiabatic expansion and thereby loses its electrical conductivity and 
will not interact with the magnetic field. On the other hand, the more extended T layer 
enables one to pass a large current and therefore to provide a large degree of conversion. 
One then has to consider the optimum dimensions of the initial perturbation. We determine 
the effective size def of the T layer as the cross section carrying half of the total current: 
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6~f 
3 ](x)dx= 1'2. 
0 

This equat ion  can be so lved fo r  def on the bas is  o f  ( 1 7 ) - ( 1 9 ) :  

a e f  = 8 { t  - -  [t  - -  ( t  - -  A)~ ] [ t  - -  @.5(1  + A))~ ] ( i  - -  A ~ ) } c ~ - l ) , ~ , / ( t  - -  A ( ~ - ~ > / ~ ) .  

F i g u r e  3 g i v e s  t h e  d e p e n d e n c e  o f  t h e  d i m e n s i o n l e s s  t h i c k n e s s  ~ e f / 6  o f  t he  T l a y e r  on 
Rmo, i . e . ,  i n  f a c t  on ~o. As Rmo i n c r e a s e s ,  ~ e f / ~  a t  f i r s t  d e c r e a s e s  s h a r p l y  b u t  t h e n  s t a b i -  
l i z e s  i n  t h e  s t a t e  w i t h  nz =4 a t  t h e  l e v e l  o f  a b o u t  0 .2  (K = 0 . 1 ,  0 . 3 ,  0 . 5 ,  0 . 7 ,  0 .9  f o r  l i n e s  
6 -10  c o r r e s p o n d i n g l y ) ,  w h i l e  i n  t h e  s t a t e  w i t h  n2 =8 i t  s e t t l e s  a t  t h e  l e v e l  o f  a b o u t  0 .02  
(K = 0 . 1 ,  0 . 3 ,  0 , 5 ,  0 . 7 ,  0 .9  f o r  l i n e s  1 -5  c o r r e s p o n d i n g l y ) .  Th i s  d i f f e r e n c e  i s  due t o  a 
qualitative difference in the temperature distributions in the T layer. The convex profile 
for n~ =4 sets up a condition for practically homogeneous current flow throughout the volume 
of the plasma, i.e., all the initially heated gas operates under this condition. In the 
case n2 =8, the stabilization of the 0.02 level is explained by the presence of a weakback- 
ground conductivity at low temperatures. For this state we conclude that the current in the 
plasma is concentrated in a region adjoining the left boundary of the T layer, whose dimen- 
sions cease to be dependent on the dimensions of the initial perturbation. Here the rest of 
the mass of gas in the T layer ceases to interact with the magnetic field and falls under 
the influence of the negative~pressure wave, where it expands and increases the overall dimen- 
sion 6. The confirmation of this is provided by the character of the ~/~o dependence in the 
s~ates with nl =4 (Fig. 4, Mo =3, 2.5, 2, and 1.5 for lines 1-4 correspondingly) and with 
n2 =8 (Mo =3, 2.5, 2, and 1.5 for lines 5-8 correspondingly). Consequently, the adiabatic 
effect of the electrodynamic bulk force leads to contraction in the current zone. �9 , 
this process will be accentuated in the following stage of the thermal stabilization, where 
the additional Joule heating of the current-concentration regions leads to the familiar pheno- 
menon of thermal contraction. The states with n, and n2 differ in the sign of the derivative 
in the solution for T(x). In the range nl <n* <n2 we can give a value n* =l/(y -- i) for 
which the solution T(x) is a linear function and ~/~o =i. Therefore, a rise in temperature 
in the initial perturbation, which leads to obedience to the condition n >n*, enables one to 
produce a homogeneous current layer, in which all the mass of the initially heated gas oper- 
ates, or conversely for initial conditions such that n <n*, part of the mass of the T layer 
is discarded and the energy consumed in heating it is lost. On the basis of the results in 
Fig. 3, the parameters of the initial perturbation should be chosen such as to obey n <n* 
and R m 0 ~ 0 . 5 .  

F i g u r e  5 shows nN(K) i n  t h e  s t a t e  w i t h  n =4 f o r  Mo =1.5, 2,  2 . 5 ,  and 3 ( l i n e s  1 -4  c o r -  
r e s p o n d i n g l y ) ,  As any change in the load is directly reflected in the gas dynamics of the 
flow containing the T layer, the nN dependence is not a symmetrical parabola with its maxi- 
mum at K =0.5. The dependence of nN on Mo is interesting. In the region of practically sig- 
nificant values for the load parameter (0.5~K~0.8), the maximum degreeof conversion is 
obtained when Mo is in the range 1.5~M~2; for values Mo >2, it might appear that one could 
increase nN, but it will be shown below that fiailure to obey the energy-balance conditions 
mahes these states unstable (they are shown by the broken parts of the curves in Fig. 5). 

We now consider the stability of a T-layer I~D generator. ~en the eleetrodynamic 
force has produced a certain temperature distribution T(x) in the T layer, an energy 
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mechanism is activated that will determine whether the temperature rises or falls in accor- 

j~l~ dance with the sign of the right side in (4), -- qind Here the construction of the 
temperature is accompanied by change in the pressure, which by virtue of the condition TF<< 
TQ is described by the equation 

Op/~x = ]B~ = - -  o ( s  (1 - -  K )  ~ B ~ .  
5 

The o v e r a l l  power d i s s i p a t e d  i n  the  T l a y e r  i s  de t e rmined  as the  i n t e g r a l  Qjo = j ~ ( T ) [ 1  - -  
0 

K]2uaB~dx, where K, u, and Bo a r e  i n d e p e n d e n t  o f  x, so c o n s e q u e n t l y  

Qjo "" ~ = .,[ o (T) dx = %6A~. 
0 

I f  the  dynamics  o f  the  p r o c e s s  a r e  such  t h a t  d~ /d t~>0 ,  the  T l a y e r  w i l l  be c o n s i d e r e d  as 
s t a b l e  and by t he  t ime t ~ Q  a s t a t i o n a r y  s t r u c t u r e  w i l l  be e s t a b l i s h e d  i n  i t ,  w h i l e  o t h e r -  
wise  t he  T l a y e r  w i l l  be u n s t a b l e  and shou ld  s p l i t  up. 

To d e t e r m i n e  t h e  b u l k  r a d i a t i v e  e n e r g y  l o s s ,  we use a v e r y  s imp le  model f o r  a r a d i a t i n g  
homogeneous l a y e r ,  f o r  which q ind  =@oSBT4/~.  Here r  p ,  ~) i s  t he  e m i s s i v i t y  o f  a hemi-  
s p h e r i c a l  gas  volume w i t h  c o m p o s i t i o n  90%CO= +10%N2 [ 7 ] .  The c o e f f i c i e n t  4 a p p e a r s  in  con-  
v e r t i n g  from a hemisphe re  to  a cube r a d i a t i n g  on a l l  f a c e s .  N a t u r a l l y ,  such  a c rude  model 
can p r o v i d e  o n l y  q u a l i t a t i v e  r e s u l t s .  

We t h e r e f o r e  s o l v e  t he  f o l l o w i n g  sys t em of  d i m e n s i o n l e s s  e q u a t i o n s  w i t h  the  same s e t  o f  
b o u n d a r y  c o n d i t i o n s  as f o r  ( 1 0 ) - ( 1 5 ) :  

Op/Os -~- O~/Os = 0; (32) 

dT 

o,) - -  = o;  ( 3 4 )  
os ~ 

O~Os = p-l; (35) 

~= T ~, p = pT. (36) 

The dimensionless parameter m is defined as m =r/~Q, where T is the characteristic time. We 
assume that ~F~T<<~Q, i.e., m <i. The dimensionless group 

4e~ SB T~ (37) 

is a dynamic characteristic, since it is dependent on the dynamic and local parameters C(Tc, 
<p>, 6 ) ,  < o ( x ) > ,  u ,  ~ .  

I n  t h e  T l a y e r ,  c < 0 . 1 ,  which i s  c h a r a c t e r i s t i c  o f  a b u l k  e m i t t e r .  T h e r e f o r e ,  we can 
assume a l i n e a r  r e l a t i o n s h i p :  

e < p___> 6 
80 Poo ~o ~--- e~ 

where r = e ( T c ,  poo ,  6o) ,  and the  o t h e r  p a r a m e t e r s  have  been  d e f i n e d  above :  

2)_1/2 
u=~.e0=,~x0o i--u ? - - t  M0 , o=%A~, 6=6oA ~. 

' 2 

Equation (37) can be rewritten as 

 --200 , . ._ ,  A6Aet, (t -- K) 2 

We use  (32) and t h e  e q u a t i o n  o f  s t a t e  (36) to  r e w r i t e  ( 3 2 ) - ( 3 5 ) :  

"f p dT dp F p~- f o p \ 2  , ~  "l 

o(, ,  o,,) o; 

(38) 

(39) 

(40) 
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O~Os  = p - 1 .  (41) 

By solving (39)-(41) we can determine the values of the following functional for each set of 
parameters Rmo, N, K, Y, n, Zoo: 

6 
~(t)  = ~ o (r) & .  

0 

Correspondingly, from the condition d~*/dt =0 we get a certain critical value of ~ , and 

then if the real value is ~0~.~.~ the state is stable. 

To solve (39)-(41) we use the method of expansion with respect to the small parameter 
and restrict ourselves to the first correction: 

r =  g+ ,o 1, p = A +  = Z o +  ,ox,, 
~, = ~.o + ~ ,  A = Ao + o~A~, A~ = A% + ~oAoI, 

Ao -~ A% § ~Ao~, A~ = Ap + (oAn. 

Here the subscript 0 denotes the zeroth (adiabatic) solution of (16)-(19), while subscript i 
denotes the first approximation to the solution of (39)-(41). 

The equations for the first approximation take the form 

(42) 

~' L r~~--~, 0, +~_0 ~, r~+' ~ J  = 0 .  

I n i t i a l  c o n d i t i o n s :  T x ( s ,  t = 0 )  = p ~ ( s ,  t = 0 )  = 0 .  B o u n d a r y  c o n d i t i o n s :  
p l ( s  =i, t)=nx. 

We use a Laplace transformation to solve (42) and (43) and after cumbersome but obvious 
1 

HQ * [ ~ n - 1"~, operations we get the solution for T~(s, t). Then we solve the condition ~ = ndTo 21ds= 
�9 0 

0 for ~* ~00 to get 

7 (d ' I1a - -  dal'a)] 

~'0' (Mo' ~0) it  + ~ M~)-I/('F-1)[ d,5'3- ' 7 1 (d2113--~411')] ' 

(43) 

=0, t) =1, 

where 

n(~'--1)+1 n(y--1)-I-1 
I -- A o v I - -  A o v 

d l = a ~  v+l ; d 2 = a s  v+l ' 

l - - A o  ~' I - - A o V  

~+1 n(?--l)+i '9+I ~(?--1)4-1 
Ao'V _ A o  'r Ao'V _ A o  ~, 

ds ~ a2 .~+, ; d4 = as v.*-* ; 

t - - A  o 'v i - - A  o v 
4(~-1) 

5y - -  4 v 
d5 = ~ / (Mo, ~o) 

(, - Ao~)~ [,~ (~ - ,) + v] 
de ........ o~+~)(v-*) '; 

[~" [a (7 - -  t )  -~- i ]  .f (M o, ~o) 

(, - Ao ) v 
a2 . . . . .  (n+~)(v-l) ; 

l~ ~ [n (? - -  i )  + t]  I (M o, ~'o) V 
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4(~;--I) 

a ~ = ~ / ( M o ,  io) ~ ," 

I :  a =  ~V(l v + l ~  , _---- 

+ - - 

Figure 6 shows the dependence of ~00 on the load parameter for various values of the 
Mach number (Mo =1.5, 2, 2.5, 3 for lines 1-4 correspondingly) ~en N =1.6, Rmo =i, n =4, 
y =1.2, and it also shows the value of the real parameter Zoo. The points of intersection 
of the s straight line with the curves represent the boundary separating the region of 
stable states from the unstable ones. 

Therefore, we have proposed a method of local analysis for a T-layer ~D generator which 
resembles the local analysis for an }~ID generator with a continuous flow [8] in enabling one 
to select the optimum modes of operation. The preliminary results show that the degree of 
conversion of the enthalpy in the combustion products into electrical energy in one T layer 
may be about 10%. 
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